hot hands in hockey
are they real? does it matter?

Namita Nandakumar
Wharton School, University of Pennsylvania
@nnstats
Let’s talk about streaks.

2017-18 Flyers’ record as coin flips:
first 16 games: $HTHTHHTHTTHTTHTTH$
next 16 games: $TTTTTTTTTTTTTHHHHHHH$
the rest: $THTTTHTHHHHTHHTTTTHHHH \ldots$

This seems like a *ridiculous* coin.

~ *The Athletic Philadelphia*, 11/27/2017
Back in January, I simulated sequences of wins and losses for a team with the Flyers’ record and showed that it was pretty unlikely for those teams to ever reach a 10-game losing streak.
But I’m zeroing in on a small, particularly interesting part of a larger sequence.

(Another small, interesting part of a larger sequence? The Penguins have lost 3 games in a row.)

The point is we need something a bit more comprehensive.
What do I want from a measure of streakiness?

- (This may differ from what you want from a measure of streakiness.)

- Takes the whole sequence into account.

 Sure, the Flyers lost 10 games in a row, but what about the rest of it?

- Puts the streaks in context.

 It’s easy to go on a losing streak if you’re the 2017-18 Arizona Coyotes.

- Imposes as few assumptions as possible.

 I am often wrong about things.

- Is easily computed, summarized, and conveyed.

 I want to quickly look at all teams and all goal scorers.

- Works for binary incidence data.

 Did a team win or not? Did a player score or not?
What do I mean by streakiness/clumpiness?

- Things are more “clumped” together than they would be if events in a sequence were randomly distributed, and this could be due to:

 - **Sequential dependence**: The next game’s outcome is impacted by whether you won the last one, or two, or three, and so forth.

 - **Non-stationarity**: There is a non-constant probability of success and the team/player goes through relatively good and bad periods.

- **Note**: I’m not at any point making any statements about the underlying quality of any team or player.

 Essentially, I’m treating observed outcomes as fixed, and then seeing if they’re streakier than what we’d expect from flipping a (not necessarily 50/50) coin.
The #AdvancedStat

- “New Measures of Clumpiness for Incidence Data” addresses major problems with existing hot hand measures.

- In particular, Zhang et al. find that the normalized entropy of inter-event times is a robust measure of clumpiness that minimizes misclassification error compared to other metrics.

- **Inter-event time**: # of time periods between wins or goals or whatever.

- Entropy is a measure borrowed from information theory that is related to disorderliness and uncertainty.

- More importantly, it has many desirable properties when utilized with inter-event times to evaluate clumpiness.
How does it work? Let’s look at the Flyers again.

- Calculate inter-event times x_i:

 \[
 \begin{array}{c}
 H & T & H & T & H & T & H & \ldots \\
 \end{array}
 \]

 \[
 x_i = 1 & 2 & 2 & 1 & 2 \\
 62 & 62 & 62 & 62 & 62 \\
 \]

- Divide by the length of the sequence + 1 to normalize.

 \[
 x_i = 1 & 2 & 2 & 1 & 2 & \ldots \\
 62 & 62 & 62 & 62 & 62 \\
 \]

- Multiply each x_i by the log of itself, sum it all up, divide by log(number of successes + 1), add 1 to keep things positive.

 \[
 \ldots H_p = 0.08558024 \quad \text{(as of 2/22/2018)}
 \]

- We know that higher values correspond to more streakiness, but is that high or low?
Simulate sequences to contextualize results.

- I simulated 10,000 sequences of wins and losses from a 32-29 team, then calculated the normalized entropy for each sequence.

- It’s clear that the Flyers’ actual results were quite a bit streakier than most simulated sequences of their record.

- In fact, they were in the 99th percentile of streakiness.
Why do we need to do the simulate?

- You might think that if one team has a higher raw entropy value than another, they’re streakier.

- But the range of reasonable values depends on the length of the sequence and number of successes.

- We’d naturally expect worse teams to have larger spacings between wins.
What about other streakiness metrics?

- **Runs Test:**
 Count the number of runs of heads or tails within a sequence.

 \[
 H \ T \ H \ T \ HH \ T \ HT \ H \ TT \ H \ T \ TTTTTTTTTTT \ HHHH \ ...
 \]

 No statistically significant evidence of “streakiness” at a 5% level for the 2017-18 Flyers.

- This disagrees with our normalized entropy test, which would classify the Flyers as streaky at a 5% level of significance.

- **Who’s right?** We can’t ever be sure, but...

- Normalized entropy more accurately classified computer-generated streaky data as streaky as compared to the runs test and others (Zhang et al.).
Streakiness of NHL Teams

- Streakiness percentile represents % of randomly generated sequences from a team’s win-loss record that they are streakier than.

 Higher = more streaky.

- NHL teams have not been too streaky this season... except for the Flyers.
Streakiest Teams Since 2009-10

- Columbus Blue Jackets, 2014-15
- Philadelphia Flyers, 2017-18

Un-Streakiest Teams Since 2009-10

- Dallas Stars, 2009-10
- Philadelphia Flyers, 2011-12

Season summaries via Hockey Reference.
Streakiness of NHL Player Scoring

- Blake Wheeler and Nick Backstrom are usually kind of streaky.
- Tomas Tatar and Joe Pavelski are usually kind of un-streaky.
- The vast majority of players with 15+ goals in 41+ games played in each of the last 5 seasons have had relatively streaky and un-streaky seasons.
Repeatability: Between Seasons
Repeatability: Within Season

Teams

Streakiness Percentile: Second Half

Players

Streakiness Percentile: First Half

$r = -0.077$

$r = 0.067$
Season Streakiness vs. Success

(This is what we’d expect due to having contextualized streakiness based on number of successes and failures.)
I could have just shown you this:
Is streakiness real?

- Yes, in the sense that there are certainly sequences in recent NHL history that appear “streaky.”
- Which could be due to chance, but also due to external factors (ex. CBJ injury issues in 2014-15).
- This is a pretty simple statement but it does matter!
- A frequent claim related to hot hands is that we are spotting patterns where there are none.

Is streakiness repeatable?

- No.

Does streakiness matter?

- No.
Thank you for listening!

Special thanks to:
- Prof. Shane Jensen (Wharton Statistics) for guidance
- Hockey Reference for data

Code/slides/data/etc. will be tweeted out @nnstats.
Appendix: Normalized Entropy Calculation (Source)

1. Convert the individual-level transaction data into incidence/binary data, if necessary.
2. Compute the Inter-event times (IETs).
 \[x_i = \begin{cases}
 t_1, & \text{if } i = 1, \\
 t_i - t_{i-1}, & \text{if } i = 2, \ldots, n, \\
 N + 1 - t_n, & \text{if } i = n + 1,
 \end{cases} \]

 where \(t_i \) and \(x_i \) are the \(i_{th} \) occurrence of event time and IETs, respectively, and \(n \) and \(N \) represent the number of visits and total time intervals.
3. Rescale the IETs. Divide IETs by \(N + 1 \).
4. Compute the normalized entropy-like

\[
H_p: 1 + \frac{\sum_{i=1}^{n+1} \log(x_i) \cdot x_i}{\log(n + 1)}.
\]
Appendix: Runs Test Calculation (Source)

H₀: the sequence was produced in a random manner
Hₐ: the sequence was not produced in a random manner

Test Statistic:

\[Z = \frac{R - \bar{R}}{s_R} \]

where \(R \) is the observed number of runs, \(\bar{R} \), is the expected number of runs, and \(s_R \) is the standard deviation of the number of runs. The values of \(\bar{R} \) and \(s_R \) are computed as follows:

\[\bar{R} = \frac{2n_1 n_2}{n_1 + n_2} + 1 \]

\[s_R^2 = \frac{2n_1 n_2 (2n_1 n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)} \]

with \(n_1 \) and \(n_2 \) denoting the number of positive and negative values in the series.

Significance Level: \(\alpha \)

Critical Region: The runs test rejects the null hypothesis if

\[|Z| > Z_{1-\alpha/2} \]